Section 2.9 Homogeneous Linear Systems (V9)
Definition 2.9.1.
A homogeneous system of linear equations is one of the form:
\begin{alignat*}{5}
a_{11}x_1 &\,+\,& a_{12}x_2 &\,+\,& \dots &\,+\,& a_{1n}x_n &\,=\,& 0 \\
a_{21}x_1 &\,+\,& a_{22}x_2 &\,+\,& \dots &\,+\,& a_{2n}x_n &\,=\,& 0 \\
\vdots& &\vdots& && &\vdots&&\vdots\\
a_{m1}x_1 &\,+\,& a_{m2}x_2 &\,+\,& \dots &\,+\,& a_{mn}x_n &\,=\,& 0
\end{alignat*}
This system is equivalent to the vector equation:
\begin{equation*}
x_1 \vec{v}_1 + \cdots+x_n \vec{v}_n = \vec{0}
\end{equation*}
and the augmented matrix:
\begin{equation*}
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1n} & 0\\
a_{21} & a_{22} & \cdots & a_{2n} & 0\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn} & 0
\end{array}\right]
\end{equation*}
Activity 2.9.1.
Note that if \(\left[\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array}\right] \) and \(\left[\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array}\right] \) are solutions to \(x_1 \vec{v}_1 + \cdots+x_n \vec{v}_n = \vec{0}\) so is \(\left[\begin{array}{c} a_1 +b_1\\ \vdots \\ a_n+b_n \end{array}\right] \text{,}\) since
\begin{equation*}
a_1 \vec{v}_1+\cdots+a_n \vec{v}_n = \vec{0}
\text{ and }
b_1 \vec{v}_1+\cdots+b_n \vec{v}_n = \vec{0}
\end{equation*}
implies
\begin{equation*}
(a_1 + b_1) \vec{v}_1+\cdots+(a_n+b_n) \vec{v}_n = \vec{0} .
\end{equation*}
Similarly, if \(c \in \IR\text{,}\) \(\left[\begin{array}{c} ca_1 \\ \vdots \\ ca_n \end{array}\right] \) is a solution. Thus the solution set of a homogeneous system is...
A basis for \(\IR^n\text{.}\)
A subspace of \(\IR^n\text{.}\)
The empty set.
Activity 2.9.2.
Consider the homogeneous system of equations
\begin{alignat*}{5}
x_1&\,+\,&2x_2&\,\,& &\,+\,& x_4 &=& 0\\
2x_1&\,+\,&4x_2&\,-\,&x_3 &\,-\,&2 x_4 &=& 0\\
3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,& x_4 &=& 0
\end{alignat*}
(a)
Find its solution set (a subspace of \(\IR^4\)).
(b)
Rewrite this solution space in the form
\begin{equation*}
\setBuilder{ a \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right] + b \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right] }{a,b \in \IR}.
\end{equation*}
(c)
Rewrite this solution space in the form
\begin{equation*}
\vspan\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right]\right\}.
\end{equation*}
Fact 2.9.2.
The coefficients of the free variables in the solution set of a linear system always yield linearly independent vectors.
Thus if
\begin{equation*}
\setBuilder{
a \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right] +
b \left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right]
}{
a,b \in \IR
} = \vspan\left\{ \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right],
\left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right] \right\}
\end{equation*}
is the solution space for a homogeneous system, then
\begin{equation*}
\setList{
\left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right],
\left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right]
}
\end{equation*}
is a basis for the solution space.
Activity 2.9.3.
Consider the homogeneous system of equations
\begin{alignat*}{5}
2x_1&\,+\,&4x_2&\,+\,& 2x_3&\,-\,&4x_4 &=& 0 \\
-2x_1&\,-\,&4x_2&\,+\,&x_3 &\,+\,& x_4 &=& 0\\
3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,&4 x_4 &=& 0
\end{alignat*}
Find a basis for its solution space.
Activity 2.9.4.
Consider the homogeneous vector equation
\begin{equation*}
x_1 \left[\begin{array}{c} 2 \\ -2 \\ 3 \end{array}\right]+
x_2 \left[\begin{array}{c} 4 \\ -4 \\ 6 \end{array}\right]+
x_3 \left[\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right]+
x_4 \left[\begin{array}{c} -4 \\ 1 \\ -4 \end{array}\right]=
\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]
\end{equation*}
Find a basis for its solution space.
Activity 2.9.5.
Consider the homogeneous system of equations
\begin{alignat*}{5}
x_1&\,-\,&3x_2&\,+\,& 2x_3 &=& 0\\
2x_1&\,+\,&6x_2&\,+\,&4x_3 &=& 0\\
x_1&\,+\,&6x_2&\,-\,&4x_3 &=& 0
\end{alignat*}
Find a basis for its solution space.
Exercises 2.9.1 Exercises
1.
Consider the homogeneous system of equations
\begin{alignat*}{6}
x_{1} &-& 2 \, x_{2} &-& x_{3} &+& 3 \, x_{4} &+& 4 \, x_{5} &=& 0\\
2 \, x_{1} &-& 3 \, x_{2} &-& 3 \, x_{3} &+& 5 \, x_{4} &+& 6 \, x_{5} &=& 0\\
&-& 5 \, x_{2} &+& 5 \, x_{3} &+& 5 \, x_{4} &+& 10 \, x_{5} &=& 0
\end{alignat*}
- Find the solution space of this system.
- Find a basis of the solution space.
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{ccccc|c}
1 & -2 & -1 & 3 & 4 & 0 \\
2 & -3 & -3 & 5 & 6 & 0 \\
0 & -5 & 5 & 5 & 10 & 0
\end{array}\right] = \left[\begin{array}{ccccc|c}
1 & 0 & -3 & 1 & 0 & 0 \\
0 & 1 & -1 & -1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- The solution space is \(\left\{ \left[\begin{array}{c}
3 \, a - b \\
a + b + 2 \, c \\
a \\
b \\
c
\end{array}\right] \middle|\,a\text{\texttt{,}}b\text{\texttt{,}}c\in\mathbb{R}\right\} \)
- A basis of the solution space is \(\left\{ \left[\begin{array}{c}
3 \\
1 \\
1 \\
0 \\
0
\end{array}\right] , \left[\begin{array}{c}
-1 \\
1 \\
0 \\
1 \\
0
\end{array}\right] , \left[\begin{array}{c}
0 \\
2 \\
0 \\
0 \\
1
\end{array}\right] \right\} \text{.}\)
2.
Consider the homogeneous system of equations
\begin{alignat*}{5}
& & & & x_{3} &-& 2 \, x_{4} &=& 0\\
x_{1} &-& 3 \, x_{2} &+& 5 \, x_{3} &-& 12 \, x_{4} &=& 0\\
& & &-& 4 \, x_{3} &+& 8 \, x_{4} &=& 0\\
x_{1} &-& 3 \, x_{2} &+& 3 \, x_{3} &-& 8 \, x_{4} &=& 0
\end{alignat*}
- Find the solution space of this system.
- Find a basis of the solution space.
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{cccc|c}
0 & 0 & 1 & -2 & 0 \\
1 & -3 & 5 & -12 & 0 \\
0 & 0 & -4 & 8 & 0 \\
1 & -3 & 3 & -8 & 0
\end{array}\right] = \left[\begin{array}{cccc|c}
1 & -3 & 0 & -2 & 0 \\
0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- The solution space is \(\left\{ \left[\begin{array}{c}
3 \, a + 2 \, b \\
a \\
2 \, b \\
b
\end{array}\right] \middle|\,a\text{\texttt{,}}b\in\mathbb{R}\right\} \)
- A basis of the solution space is \(\left\{ \left[\begin{array}{c}
3 \\
1 \\
0 \\
0
\end{array}\right] , \left[\begin{array}{c}
2 \\
0 \\
2 \\
1
\end{array}\right] \right\} \text{.}\)
3.
Consider the homogeneous system of equations
\begin{alignat*}{4}
3 \, x_{1} &-& 10 \, x_{2} & & &=& 0\\
-2 \, x_{1} &+& 7 \, x_{2} & & &=& 0\\
x_{1} &+& 2 \, x_{2} & & &=& 0\\
2 \, x_{1} &-& 7 \, x_{2} & & &=& 0\\
3 \, x_{1} &-& 9 \, x_{2} & & &=& 0
\end{alignat*}
- Find the solution space of this system.
- Find a basis of the solution space.
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{ccc|c}
3 & -10 & 0 & 0 \\
-2 & 7 & 0 & 0 \\
1 & 2 & 0 & 0 \\
2 & -7 & 0 & 0 \\
3 & -9 & 0 & 0
\end{array}\right] = \left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- The solution space is \(\left\{ \left[\begin{array}{c}
0 \\
0 \\
a
\end{array}\right] \middle|\,a\in\mathbb{R}\right\} \)
- A basis of the solution space is \(\left\{ \left[\begin{array}{c}
0 \\
0 \\
1
\end{array}\right] \right\} \text{.}\)
4.
Consider the homogeneous system of equations
\begin{alignat*}{5}
x_{1} &-& x_{2} &-& x_{3} &-& 8 \, x_{4} &=& 0\\
2 \, x_{1} &-& x_{2} &-& 5 \, x_{3} &-& 12 \, x_{4} &=& 0\\
&-& 3 \, x_{2} &+& 9 \, x_{3} &-& 11 \, x_{4} &=& 0\\
-x_{1} &+& x_{2} &+& x_{3} &+& 7 \, x_{4} &=& 0
\end{alignat*}
- Find the solution space of this system.
- Find a basis of the solution space.
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{cccc|c}
1 & -1 & -1 & -8 & 0 \\
2 & -1 & -5 & -12 & 0 \\
0 & -3 & 9 & -11 & 0 \\
-1 & 1 & 1 & 7 & 0
\end{array}\right] = \left[\begin{array}{cccc|c}
1 & 0 & -4 & 0 & 0 \\
0 & 1 & -3 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- The solution space is \(\left\{ \left[\begin{array}{c}
4 \, a \\
3 \, a \\
a \\
0
\end{array}\right] \middle|\,a\in\mathbb{R}\right\} \)
- A basis of the solution space is \(\left\{ \left[\begin{array}{c}
4 \\
3 \\
1 \\
0
\end{array}\right] \right\} \text{.}\)
5.
Consider the homogeneous system of equations
\begin{alignat*}{4}
2 \, x_{1} &-& 2 \, x_{2} & & &=& 0\\
-5 \, x_{1} &+& x_{2} &+& 4 \, x_{3} &=& 0\\
-2 \, x_{1} &+& 3 \, x_{2} &-& x_{3} &=& 0\\
-5 \, x_{1} &-& 2 \, x_{2} &+& 7 \, x_{3} &=& 0\\
x_{1} &-& 2 \, x_{2} &+& x_{3} &=& 0
\end{alignat*}
- Find the solution space of this system.
- Find a basis of the solution space.
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{ccc|c}
2 & -2 & 0 & 0 \\
-5 & 1 & 4 & 0 \\
-2 & 3 & -1 & 0 \\
-5 & -2 & 7 & 0 \\
1 & -2 & 1 & 0
\end{array}\right] = \left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- The solution space is \(\left\{ \left[\begin{array}{c}
a \\
a \\
a
\end{array}\right] \middle|\,a\in\mathbb{R}\right\} \)
- A basis of the solution space is \(\left\{ \left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \right\} \text{.}\)
Additional exercises available at checkit.clontz.org.