Section 2.8 Polynomial and Matrix Spaces (V8)
Fact 2.8.1.
Every vector space with finite dimension, that is, every vector space \(V\) with a basis of the form \(\{\vec v_1,\vec v_2,\dots,\vec v_n\}\) is said to be isomorphic to a Euclidean space \(\IR^n\text{,}\) since there exists a natural correspondance between vectors in \(V\) and vectors in \(\IR^n\text{:}\)
Observation 2.8.2.
We've already been taking advantage of the previous fact by converting polynomials and matrices into Euclidean vectors. Since \(\P^3\) and \(M_{2,2}\) are both four-dimensional:
Activity 2.8.1.
Suppose \(W\) is a subspace of \(\P^8\text{,}\) and you know that the set \(\{ x^3+x, x^2+1, x^4-x \}\) is a linearly independent subset of \(W\text{.}\) What can you conclude about \(W\text{?}\)
The dimension of \(W\) is 3 or less.
The dimension of \(W\) is exactly 3.
The dimension of \(W\) is 3 or more.
Activity 2.8.2.
Suppose \(W\) is a subspace of \(\P^8\text{,}\) and you know that \(W\) is spanned by the six vectors
What can you conclude about \(W\text{?}\)
The dimension of \(W\) is 6 or less.
The dimension of \(W\) is exactly 3.
The dimension of \(W\) is 6 or more.
Observation 2.8.3.
The space of polynomials \(\P\) (of any degree) has the basis \(\{1,x,x^2,x^3,\dots\}\text{,}\) so it is a natural example of an infinite-dimensional vector space.
Since \(\P\) and other infinite-dimensional spaces cannot be treated as an isomorphic finite-dimensional Euclidean space \(\IR^n\text{,}\) vectors in such spaces cannot be studied by converting them into Euclidean vectors. Fortunately, most of the examples we will be interested in for this course will be finite-dimensional.
Exercises 2.8.1 Exercises
1.
Consider the statement
Claim 2.8.4.
\(\left\{ -4 \, x^{3} + 2 \, x^{2} - x - 6 , -5 \, x^{3} + 3 \, x^{2} + 5 \, x + 2 , -5 \, x^{3} + 3 \, x^{2} + x - 4 , 10 \, x^{3} - 6 \, x^{2} - 10 \, x - 4 \right\} \)
- Write an equivalent statement using a polynomial equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.8.5.
\(\left\{ -4 \, x^{3} + 2 \, x^{2} - x - 6 , -5 \, x^{3} + 3 \, x^{2} + 5 \, x + 2 , -5 \, x^{3} + 3 \, x^{2} + x - 4 , 10 \, x^{3} - 6 \, x^{2} - 10 \, x - 4 \right\} \)Claim 2.8.6.
\begin{equation*} y_{1} \left( -4 \, x^{3} + 2 \, x^{2} - x - 6 \right) + y_{2} \left( -5 \, x^{3} + 3 \, x^{2} + 5 \, x + 2 \right) + y_{3} \left( -5 \, x^{3} + 3 \, x^{2} + x - 4 \right) + y_{4} \left( 10 \, x^{3} - 6 \, x^{2} - 10 \, x - 4 \right) = 0 \end{equation*} - The set of polynomials \(\left\{ -4 \, x^{3} + 2 \, x^{2} - x - 6 , -5 \, x^{3} + 3 \, x^{2} + 5 \, x + 2 , -5 \, x^{3} + 3 \, x^{2} + x - 4 , 10 \, x^{3} - 6 \, x^{2} - 10 \, x - 4 \right\} \)is linearly dependent.
2.
Consider the statement
Claim 2.8.7.
\(\left\{ \left[\begin{array}{cc}
0 & 1 \\
-6 & 0
\end{array}\right] , \left[\begin{array}{cc}
5 & 3 \\
-5 & 5
\end{array}\right] , \left[\begin{array}{cc}
-4 & 3 \\
-5 & -2
\end{array}\right] , \left[\begin{array}{cc}
-3 & -4 \\
1 & -4
\end{array}\right] \right\} \)
- Write an equivalent statement using a matrix equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.8.8.
\(\left\{ \left[\begin{array}{cc} 0 & 1 \\ -6 & 0 \end{array}\right] , \left[\begin{array}{cc} 5 & 3 \\ -5 & 5 \end{array}\right] , \left[\begin{array}{cc} -4 & 3 \\ -5 & -2 \end{array}\right] , \left[\begin{array}{cc} -3 & -4 \\ 1 & -4 \end{array}\right] \right\} \)Claim 2.8.9.
\begin{equation*} y_{1} \left[\begin{array}{cc} 0 & 1 \\ -6 & 0 \end{array}\right] + y_{2} \left[\begin{array}{cc} 5 & 3 \\ -5 & 5 \end{array}\right] + y_{3} \left[\begin{array}{cc} -4 & 3 \\ -5 & -2 \end{array}\right] + y_{4} \left[\begin{array}{cc} -3 & -4 \\ 1 & -4 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \end{equation*} - The set of matrices \(\left\{ \left[\begin{array}{cc} 0 & 1 \\ -6 & 0 \end{array}\right] , \left[\begin{array}{cc} 5 & 3 \\ -5 & 5 \end{array}\right] , \left[\begin{array}{cc} -4 & 3 \\ -5 & -2 \end{array}\right] , \left[\begin{array}{cc} -3 & -4 \\ 1 & -4 \end{array}\right] \right\} \)is linearly independent.
3.
Consider the statement
Claim 2.8.10.
\(\left\{ \left[\begin{array}{cc}
-4 & 0 \\
3 & -2
\end{array}\right] , \left[\begin{array}{cc}
-4 & 4 \\
-2 & -1
\end{array}\right] , \left[\begin{array}{cc}
4 & 0 \\
-3 & 2
\end{array}\right] , \left[\begin{array}{cc}
17 & -7 \\
0 & 8
\end{array}\right] \right\} \)
- Write an equivalent statement using a matrix equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.8.11.
\(\left\{ \left[\begin{array}{cc} -4 & 0 \\ 3 & -2 \end{array}\right] , \left[\begin{array}{cc} -4 & 4 \\ -2 & -1 \end{array}\right] , \left[\begin{array}{cc} 4 & 0 \\ -3 & 2 \end{array}\right] , \left[\begin{array}{cc} 17 & -7 \\ 0 & 8 \end{array}\right] \right\} \)Claim 2.8.12.
\begin{equation*} y_{1} \left[\begin{array}{cc} -4 & 0 \\ 3 & -2 \end{array}\right] + y_{2} \left[\begin{array}{cc} -4 & 4 \\ -2 & -1 \end{array}\right] + y_{3} \left[\begin{array}{cc} 4 & 0 \\ -3 & 2 \end{array}\right] + y_{4} \left[\begin{array}{cc} 17 & -7 \\ 0 & 8 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \end{equation*} - The set of matrices \(\left\{ \left[\begin{array}{cc} -4 & 0 \\ 3 & -2 \end{array}\right] , \left[\begin{array}{cc} -4 & 4 \\ -2 & -1 \end{array}\right] , \left[\begin{array}{cc} 4 & 0 \\ -3 & 2 \end{array}\right] , \left[\begin{array}{cc} 17 & -7 \\ 0 & 8 \end{array}\right] \right\} \)is linearly dependent.
4.
Consider the statement
Claim 2.8.13.
\(\left\{ \left[\begin{array}{cc}
2 & 0 \\
-4 & -2
\end{array}\right] , \left[\begin{array}{cc}
-4 & 4 \\
-1 & -3
\end{array}\right] , \left[\begin{array}{cc}
-4 & -4 \\
-1 & -3
\end{array}\right] , \left[\begin{array}{cc}
-3 & 0 \\
2 & -5
\end{array}\right] , \left[\begin{array}{cc}
4 & 0 \\
-3 & -2
\end{array}\right] , \left[\begin{array}{cc}
-2 & 3 \\
2 & -1
\end{array}\right] \right\} \)\(\mathrm{M}_{2,2}\text{.}\)
- Write an equivalent statement using a matrix equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.8.14.
\(\left\{ \left[\begin{array}{cc} 2 & 0 \\ -4 & -2 \end{array}\right] , \left[\begin{array}{cc} -4 & 4 \\ -1 & -3 \end{array}\right] , \left[\begin{array}{cc} -4 & -4 \\ -1 & -3 \end{array}\right] , \left[\begin{array}{cc} -3 & 0 \\ 2 & -5 \end{array}\right] , \left[\begin{array}{cc} 4 & 0 \\ -3 & -2 \end{array}\right] , \left[\begin{array}{cc} -2 & 3 \\ 2 & -1 \end{array}\right] \right\} \)\(\mathrm{M}_{2,2}\text{.}\)Claim 2.8.15.
\begin{equation*} y_{1} \left[\begin{array}{cc} 2 & 0 \\ -4 & -2 \end{array}\right] + y_{2} \left[\begin{array}{cc} -4 & 4 \\ -1 & -3 \end{array}\right] + y_{3} \left[\begin{array}{cc} -4 & -4 \\ -1 & -3 \end{array}\right] + y_{4} \left[\begin{array}{cc} -3 & 0 \\ 2 & -5 \end{array}\right] + y_{5} \left[\begin{array}{cc} 4 & 0 \\ -3 & -2 \end{array}\right] + y_{6} \left[\begin{array}{cc} -2 & 3 \\ 2 & -1 \end{array}\right] =B \end{equation*}\(B \in \mathrm{M}_{2,2}\text{.}\) - The set of matrices \(\left\{ \left[\begin{array}{cc} 2 & 0 \\ -4 & -2 \end{array}\right] , \left[\begin{array}{cc} -4 & 4 \\ -1 & -3 \end{array}\right] , \left[\begin{array}{cc} -4 & -4 \\ -1 & -3 \end{array}\right] , \left[\begin{array}{cc} -3 & 0 \\ 2 & -5 \end{array}\right] , \left[\begin{array}{cc} 4 & 0 \\ -3 & -2 \end{array}\right] , \left[\begin{array}{cc} -2 & 3 \\ 2 & -1 \end{array}\right] \right\} \) spans \(\mathrm{M}_{2,2}\text{.}\)
5.
Consider the statement
Claim 2.8.16.
\(\left\{ \left[\begin{array}{cc}
3 & 4 \\
-3 & -5
\end{array}\right] , \left[\begin{array}{cc}
0 & 3 \\
-2 & -2
\end{array}\right] , \left[\begin{array}{cc}
-5 & -2 \\
-5 & 1
\end{array}\right] , \left[\begin{array}{cc}
6 & 8 \\
-6 & -10
\end{array}\right] \right\} \)\(\mathrm{M}_{2,2}\text{.}\)
- Write an equivalent statement using a matrix equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.8.17.
\(\left\{ \left[\begin{array}{cc} 3 & 4 \\ -3 & -5 \end{array}\right] , \left[\begin{array}{cc} 0 & 3 \\ -2 & -2 \end{array}\right] , \left[\begin{array}{cc} -5 & -2 \\ -5 & 1 \end{array}\right] , \left[\begin{array}{cc} 6 & 8 \\ -6 & -10 \end{array}\right] \right\} \)\(\mathrm{M}_{2,2}\text{.}\)Claim 2.8.18.
\begin{equation*} y_{1} \left[\begin{array}{cc} 3 & 4 \\ -3 & -5 \end{array}\right] + y_{2} \left[\begin{array}{cc} 0 & 3 \\ -2 & -2 \end{array}\right] + y_{3} \left[\begin{array}{cc} -5 & -2 \\ -5 & 1 \end{array}\right] + y_{4} \left[\begin{array}{cc} 6 & 8 \\ -6 & -10 \end{array}\right] =B \end{equation*}\(B \in \mathrm{M}_{2,2}\text{.}\) - The set of matrices \(\left\{ \left[\begin{array}{cc} 3 & 4 \\ -3 & -5 \end{array}\right] , \left[\begin{array}{cc} 0 & 3 \\ -2 & -2 \end{array}\right] , \left[\begin{array}{cc} -5 & -2 \\ -5 & 1 \end{array}\right] , \left[\begin{array}{cc} 6 & 8 \\ -6 & -10 \end{array}\right] \right\} \) does not span \(\mathrm{M}_{2,2}\text{.}\)
Additional exercises available at checkit.clontz.org.