Section 2.7 Subspace Basis and Dimension (V7)
Activity 2.7.1.
Consider the subspace of \(\IR^4\) given by \(W=\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
\text{.}\)
(a)
Mark the part of \(\RREF\left[\begin{array}{cccc}
2&2&2&1\\
3&0&-3&5\\
0&1&2&-1\\
1&-1&-3&0
\end{array}\right]\) that shows that \(W\)'s spanning set is linearly dependent.
(b)
Find a basis for \(W\) by removing a vector from its spanning set to make it linearly independent.
Fact 2.7.2.
Let \(S=\{\vec v_1,\dots,\vec v_m\}\text{.}\) The easiest basis describing \(\vspan S\) is the set of vectors in \(S\) given by the pivot columns of \(\RREF[\vec v_1\,\dots\,\vec v_m]\text{.}\)
Put another way, to compute a basis for the subspace \(\vspan S\text{,}\) simply remove the vectors corresponding to the non-pivot columns of \(\RREF[\vec v_1\,\dots\,\vec v_m]\text{.}\) For example, since
\begin{equation*}
\RREF
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -2 \\
-3 & 1 & -2
\end{array}\right]
=
\left[\begin{array}{ccc}
\circledNumber{1} & 0 & 1 \\
0 & \circledNumber{1} & 1 \\
0 & 0 & 0
\end{array}\right]
\end{equation*}
the subspace \(W=\vspan\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right],
\left[\begin{array}{c}3\\-2\\-2\end{array}\right]
}\) has \(\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right]
}\) as a basis.
Activity 2.7.2.
Let \(W\) be the subspace of \(\IR^4\) given by
\begin{equation*}
W = \vspan \left\{
\left[\begin{array}{c} 1 \\ 3 \\ 1 \\ -1 \end{array}\right],
\left[\begin{array}{c} 2 \\ -1 \\ 1 \\ 2 \end{array}\right],
\left[\begin{array}{c} 4 \\ 5 \\ 3 \\ 0 \end{array}\right],
\left[\begin{array}{c} 3 \\ 2 \\ 2 \\ 1 \end{array}\right]
\right\} \text{.}
\end{equation*}
Find a basis for \(W\text{.}\)
Activity 2.7.3.
Let \(W\) be the subspace of \(\P^3\) given by
\begin{equation*}
W = \vspan \left\{x^3+3x^2+x-1, 2x^3-x^2+x+2, 4x^3+5x^2+3x, 3x^3+2x^2+2x+1 \right\}
\end{equation*}
Find a basis for \(W\text{.}\)
Activity 2.7.4.
Let \(W\) be the subspace of \(M_{2,2}\) given by
\begin{equation*}
W = \vspan \left\{
\left[\begin{array}{c} 1 & 3 \\ 1 & -1 \end{array}\right],
\left[\begin{array}{c} 2 & -1 \\ 1 & 2 \end{array}\right],
\left[\begin{array}{c} 4 & 5 \\ 3 & 0 \end{array}\right],
\left[\begin{array}{c} 3 & 2 \\ 2 & 1 \end{array}\right]
\right\}.
\end{equation*}
Find a basis for \(W\text{.}\)
Activity 2.7.5.
Let
\begin{equation*}
S=\left\{
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right],
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right]
\right\}
\end{equation*}
and
\begin{equation*}
T=\left\{
\left[\begin{array}{c}2\\0\\1\\-1\end{array}\right],
\left[\begin{array}{c}2\\-3\\2\\-3\end{array}\right],
\left[\begin{array}{c}1\\5\\-1\\0\end{array}\right],
\left[\begin{array}{c}2\\3\\0\\1\end{array}\right]
\right\}\text{.}
\end{equation*}
(a)
Find a basis for \(\vspan S\text{.}\)
(b)
Find a basis for \(\vspan T\text{.}\)
Fact 2.7.4.
Any non-trivial vector space has infinitely-many different bases, but all the bases for a given vector space are exactly the same size.
For example,
\begin{equation*}
\setList{\vec e_1,\vec e_2,\vec e_3}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\0\end{array}\right],
\left[\begin{array}{c}0\\1\\0\end{array}\right],
\left[\begin{array}{c}1\\1\\1\end{array}\right]
}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right],
\left[\begin{array}{c}3\\-2\\5\end{array}\right]
}
\end{equation*}
are all valid bases for \(\IR^3\text{,}\) and they all contain three vectors.
Definition 2.7.5.
The dimension of a vector space is equal to the size of any basis for the vector space.
As you'd expect, \(\IR^n\) has dimension \(n\text{.}\) For example, \(\IR^3\) has dimension \(3\) because any basis for \(\IR^3\) such as
\begin{equation*}
\setList{\vec e_1,\vec e_2,\vec e_3}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\0\end{array}\right],
\left[\begin{array}{c}0\\1\\0\end{array}\right],
\left[\begin{array}{c}1\\1\\1\end{array}\right]
}
\text{ and }
\setList{
\left[\begin{array}{c}1\\0\\-3\end{array}\right],
\left[\begin{array}{c}2\\-2\\1\end{array}\right],
\left[\begin{array}{c}3\\-2\\5\end{array}\right]
}
\end{equation*}
contains exactly three vectors.
Activity 2.7.6.
Find the dimension of each subspace of \(\IR^4\) by finding \(\RREF\) for each corresponding matrix.
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}2\\0\\0\\3\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right],
\left[\begin{array}{c}-3\\0\\1\\3\end{array}\right]
\right\}
\end{equation*}
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}2\\0\\0\\3\end{array}\right],
\left[\begin{array}{c}3\\13\\7\\16\end{array}\right],
\left[\begin{array}{c}-1\\10\\7\\14\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right]
\right\}
\end{equation*}
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}2\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}4\\3\\0\\2\end{array}\right],
\left[\begin{array}{c}-3\\0\\1\\3\end{array}\right],
\left[\begin{array}{c}3\\6\\1\\5\end{array}\right]
\right\}
\end{equation*}
\begin{equation*}
\vspan\left\{
\left[\begin{array}{c}5\\3\\0\\-1\end{array}\right],
\left[\begin{array}{c}-2\\1\\0\\3\end{array}\right],
\left[\begin{array}{c}4\\5\\1\\3\end{array}\right]
\right\}
\end{equation*}
Exercises 2.7.1 Exercises
1.
Consider the subspace
\begin{equation*}
W=\operatorname{span} \left\{ \left[\begin{array}{c}
-4 \\
-4 \\
1 \\
-2
\end{array}\right] , \left[\begin{array}{c}
-3 \\
-2 \\
3 \\
-3
\end{array}\right] , \left[\begin{array}{c}
-7 \\
-6 \\
4 \\
-5
\end{array}\right] , \left[\begin{array}{c}
-4 \\
-2 \\
3 \\
3
\end{array}\right] \right\} .
\end{equation*}
- Explain how to find a basis of \(W\text{.}\)
- Explain how to find the dimension of \(W\text{.}\)
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{cccc}
-4 & -3 & -7 & -4 \\
-4 & -2 & -6 & -2 \\
1 & 3 & 4 & 3 \\
-2 & -3 & -5 & 3
\end{array}\right] = \left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- A basis of \(W\) is \(\left\{ \left[\begin{array}{c}
-4 \\
-4 \\
1 \\
-2
\end{array}\right] , \left[\begin{array}{c}
-3 \\
-2 \\
3 \\
-3
\end{array}\right] , \left[\begin{array}{c}
-4 \\
-2 \\
3 \\
3
\end{array}\right] \right\} \text{.}\)
- The dimension of \(W\) is \(3 \text{.}\)
2.
Consider the subspace
\begin{equation*}
W=\operatorname{span} \left\{ \left[\begin{array}{c}
-2 \\
2 \\
3 \\
-4
\end{array}\right] , \left[\begin{array}{c}
2 \\
-3 \\
-2 \\
-3
\end{array}\right] , \left[\begin{array}{c}
0 \\
-1 \\
-2 \\
3
\end{array}\right] , \left[\begin{array}{c}
-2 \\
2 \\
0 \\
1
\end{array}\right] , \left[\begin{array}{c}
4 \\
-8 \\
-8 \\
0
\end{array}\right] \right\} .
\end{equation*}
- Explain how to find a basis of \(W\text{.}\)
- Explain how to find the dimension of \(W\text{.}\)
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{ccccc}
-2 & 2 & 0 & -2 & 4 \\
2 & -3 & -1 & 2 & -8 \\
3 & -2 & -2 & 0 & -8 \\
-4 & -3 & 3 & 1 & 0
\end{array}\right] = \left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{equation*}
- A basis of \(W\) is \(\left\{ \left[\begin{array}{c}
-2 \\
2 \\
3 \\
-4
\end{array}\right] , \left[\begin{array}{c}
2 \\
-3 \\
-2 \\
-3
\end{array}\right] , \left[\begin{array}{c}
0 \\
-1 \\
-2 \\
3
\end{array}\right] , \left[\begin{array}{c}
-2 \\
2 \\
0 \\
1
\end{array}\right] \right\} \text{.}\)
- The dimension of \(W\) is \(4 \text{.}\)
3.
Consider the subspace
\begin{equation*}
W=\operatorname{span} \left\{ \left[\begin{array}{c}
3 \\
-3 \\
-2 \\
2
\end{array}\right] , \left[\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right] , \left[\begin{array}{c}
-1 \\
2 \\
3 \\
-4
\end{array}\right] , \left[\begin{array}{c}
3 \\
-3 \\
-2 \\
2
\end{array}\right] , \left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-4
\end{array}\right] , \left[\begin{array}{c}
1 \\
3 \\
-2 \\
2
\end{array}\right] \right\} .
\end{equation*}
- Explain how to find a basis of \(W\text{.}\)
- Explain how to find the dimension of \(W\text{.}\)
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{cccccc}
3 & 0 & -1 & 3 & -1 & 1 \\
-3 & -2 & 2 & -3 & -3 & 3 \\
-2 & 0 & 3 & -2 & 0 & -2 \\
2 & 1 & -4 & 2 & -4 & 2
\end{array}\right] = \left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & \frac{1}{43} \\
0 & 1 & 0 & 0 & 0 & -\frac{76}{43} \\
0 & 0 & 1 & 0 & 0 & -\frac{28}{43} \\
0 & 0 & 0 & 0 & 1 & -\frac{12}{43}
\end{array}\right]
\end{equation*}
- A basis of \(W\) is \(\left\{ \left[\begin{array}{c}
3 \\
-3 \\
-2 \\
2
\end{array}\right] , \left[\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right] , \left[\begin{array}{c}
-1 \\
2 \\
3 \\
-4
\end{array}\right] , \left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-4
\end{array}\right] \right\} \text{.}\)
- The dimension of \(W\) is \(4 \text{.}\)
4.
Consider the subspace
\begin{equation*}
W=\operatorname{span} \left\{ \left[\begin{array}{c}
3 \\
3 \\
1 \\
-3
\end{array}\right] , \left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-2
\end{array}\right] , \left[\begin{array}{c}
-5 \\
-9 \\
-1 \\
-1
\end{array}\right] , \left[\begin{array}{c}
15 \\
27 \\
3 \\
3
\end{array}\right] , \left[\begin{array}{c}
1 \\
-3 \\
1 \\
-7
\end{array}\right] \right\} .
\end{equation*}
- Explain how to find a basis of \(W\text{.}\)
- Explain how to find the dimension of \(W\text{.}\)
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{ccccc}
3 & -1 & -5 & 15 & 1 \\
3 & -3 & -9 & 27 & -3 \\
1 & 0 & -1 & 3 & 1 \\
-3 & -2 & -1 & 3 & -7
\end{array}\right] = \left[\begin{array}{ccccc}
1 & 0 & -1 & 3 & 1 \\
0 & 1 & 2 & -6 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- A basis of \(W\) is \(\left\{ \left[\begin{array}{c}
3 \\
3 \\
1 \\
-3
\end{array}\right] , \left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-2
\end{array}\right] \right\} \text{.}\)
- The dimension of \(W\) is \(2 \text{.}\)
5.
Consider the subspace
\begin{equation*}
W=\operatorname{span} \left\{ \left[\begin{array}{c}
0 \\
0 \\
-2 \\
-2
\end{array}\right] , \left[\begin{array}{c}
-4 \\
1 \\
-1 \\
-1
\end{array}\right] , \left[\begin{array}{c}
12 \\
-3 \\
-1 \\
-1
\end{array}\right] , \left[\begin{array}{c}
-4 \\
1 \\
-1 \\
-1
\end{array}\right] , \left[\begin{array}{c}
2 \\
2 \\
3 \\
2
\end{array}\right] , \left[\begin{array}{c}
16 \\
-4 \\
10 \\
10
\end{array}\right] \right\} .
\end{equation*}
- Explain how to find a basis of \(W\text{.}\)
- Explain how to find the dimension of \(W\text{.}\)
Answer
\begin{equation*}
\operatorname{RREF} \left[\begin{array}{cccccc}
0 & -4 & 12 & -4 & 2 & 16 \\
0 & 1 & -3 & 1 & 2 & -4 \\
-2 & -1 & -1 & -1 & 3 & 10 \\
-2 & -1 & -1 & -1 & 2 & 10
\end{array}\right] = \left[\begin{array}{cccccc}
1 & 0 & 2 & 0 & 0 & -3 \\
0 & 1 & -3 & 1 & 0 & -4 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{equation*}
- A basis of \(W\) is \(\left\{ \left[\begin{array}{c}
0 \\
0 \\
-2 \\
-2
\end{array}\right] , \left[\begin{array}{c}
-4 \\
1 \\
-1 \\
-1
\end{array}\right] , \left[\begin{array}{c}
2 \\
2 \\
3 \\
2
\end{array}\right] \right\} \text{.}\)
- The dimension of \(W\) is \(3 \text{.}\)
Additional exercises available at checkit.clontz.org.