Skip to main content

Section 2.3 Spanning Sets (V3)

Observation 2.3.1.

Any single non-zero vector/number \(x\) in \(\IR^1\) spans \(\IR^1\text{,}\) since \(\IR^1=\setBuilder{cx}{c\in\IR}\text{.}\)

\begin{tikzpicture}
\draw[<->] (-3,0) -- (3,0);
\draw[thick,->,blue] (0,0) -- (2,0) node[above] {x};
\draw (0,-0.2) -- (0,0.2) node[above] {0};
\end{tikzpicture}
        
Activity 2.3.1.

How many vectors are required to span \(\IR^2\text{?}\) Sketch a drawing in the \(xy\) plane to support your answer.

  \begin{tikzpicture}[scale=0.5]
    \draw[<->] (-4,0) -- (4,0);
    \draw[<->] (0,-4) -- (0,4);
  \end{tikzpicture}
        
  1. \(\displaystyle 1\)

  2. \(\displaystyle 2\)

  3. \(\displaystyle 3\)

  4. \(\displaystyle 4\)

  5. Infinitely Many

Activity 2.3.2.

How many vectors are required to span \(\IR^3\text{?}\)

  \begin{tikzpicture}[x={(210:0.8cm)}, y={(0:1cm)}, z={(90:1cm)},scale=0.4]
    \draw[->] (0,0,0) -- (6,0,0);
    \draw[->] (0,0,0) -- (0,6,0);
    \draw[->] (0,0,0) -- (0,0,6);
  \end{tikzpicture}
        
  1. \(\displaystyle 1\)

  2. \(\displaystyle 2\)

  3. \(\displaystyle 3\)

  4. \(\displaystyle 4\)

  5. Infinitely Many

Activity 2.3.3.

Choose any vector \(\left[\begin{array}{c}\unknown\\\unknown\\\unknown\end{array}\right]\) in \(\IR^3\) that is not in \(\vspan\left\{\left[\begin{array}{c}1\\-1\\0\end{array}\right], \left[\begin{array}{c}-2\\0\\1\end{array}\right]\right\}\) by using technology to verify that \(\RREF \left[\begin{array}{cc|c}1&-2&\unknown\\-1&0&\unknown\\0&1&\unknown\end{array}\right] = \left[\begin{array}{cc|c}1&0&0\\0&1&0\\0&0&1\end{array}\right] \text{.}\) (Why does this work?)

Activity 2.3.4.

Consider the set of vectors \(S=\left\{ \left[\begin{array}{c}2\\3\\0\\-1\end{array}\right], \left[\begin{array}{c}1\\-4\\3\\0\end{array}\right], \left[\begin{array}{c}1\\7\\-3\\-1\end{array}\right], \left[\begin{array}{c}0\\3\\5\\7\end{array}\right], \left[\begin{array}{c}3\\13\\7\\16\end{array}\right] \right\}\) and the question “Does \(\IR^4=\vspan S\text{?}\)”

(a)

Rewrite this question in terms of the solutions to a vector equation.

(b)

Answer your new question, and use this to answer the original question.

Activity 2.3.5.

Consider the set of third-degree polynomials

\begin{align*} S=\{ &2x^3+3x^2-1, 2x^3+3, 3x^3+13x^2+7x+16,\\ &-x^3+10x^2+7x+14, 4x^3+3x^2+2 \} . \end{align*}

and the question “Does \(\P^3=\vspan S\text{?}\)”

(a)

Rewrite this question to be about the solutions to a polynomial equation.

(b)

Answer your new question, and use this to answer the original question.

Activity 2.3.6.

Consider the set of matrices

\begin{equation*} S = \left\{ \left[\begin{array}{cc} 1 & 3 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right] \right\} \end{equation*}

and the question “Does \(M_{2,2} = \vspan S\text{?}\)”

(a)

Rewrite this as a question about the solutions to a matrix equation.

(b)

Answer your new question, and use this to answer the original question.

Activity 2.3.7.

Let \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \IR^7\) be three vectors, and suppose \(\vec{w}\) is another vector with \(\vec{w} \in \vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\}\text{.}\) What can you conclude about \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{?}\)

  1. \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \) is larger than \(\vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}\)
  2. \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} = \vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}\)
  3. \(\vspan \left\{ \vec{w}, \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \) is smaller than \(\vspan \left\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \right\} \text{.}\)

Exercises 2.3.1 Exercises

1.

Consider the statement

  1. Write an equivalent statement using a vector equation.
  2. Explain why your statement is true or false.
Answer
\begin{equation*} \operatorname{RREF} \left[\begin{array}{cccc} 3 & 3 & -4 & -10 \\ -5 & -3 & -3 & 7 \\ -5 & 3 & 2 & 12 \\ 0 & 4 & 4 & 4 \end{array}\right] = \left[\begin{array}{cccc} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{equation*}
  1. The statement is equivalent to the statement
  2. The set of vectors \(\left\{ \left[\begin{array}{c} 3 \\ -5 \\ -5 \\ 0 \end{array}\right] , \left[\begin{array}{c} 3 \\ -3 \\ 3 \\ 4 \end{array}\right] , \left[\begin{array}{c} -4 \\ -3 \\ 2 \\ 4 \end{array}\right] , \left[\begin{array}{c} -10 \\ 7 \\ 12 \\ 4 \end{array}\right] \right\} \) does not span \(\mathbb{R}^4\text{.}\)
2.

Consider the statement

  1. Write an equivalent statement using a vector equation.
  2. Explain why your statement is true or false.
Answer
\begin{equation*} \operatorname{RREF} \left[\begin{array}{ccccc} 4 & -5 & -3 & -2 & 1 \\ -3 & 1 & 4 & -3 & -1 \\ 1 & 4 & -4 & 2 & 3 \\ 2 & -4 & -1 & -3 & 0 \end{array}\right] = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & \frac{8}{5} \\ 0 & 1 & 0 & 0 & \frac{29}{30} \\ 0 & 0 & 1 & 0 & \frac{13}{30} \\ 0 & 0 & 0 & 1 & -\frac{11}{30} \end{array}\right] \end{equation*}
  1. The statement is equivalent to the statement
  2. The set of vectors \(\left\{ \left[\begin{array}{c} 4 \\ -3 \\ 1 \\ 2 \end{array}\right] , \left[\begin{array}{c} -5 \\ 1 \\ 4 \\ -4 \end{array}\right] , \left[\begin{array}{c} -3 \\ 4 \\ -4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ -3 \\ 2 \\ -3 \end{array}\right] , \left[\begin{array}{c} 1 \\ -1 \\ 3 \\ 0 \end{array}\right] \right\} \) spans \(\mathbb{R}^4\text{.}\)
3.

Consider the statement

  1. Write an equivalent statement using a vector equation.
  2. Explain why your statement is true or false.
Answer
\begin{equation*} \operatorname{RREF} \left[\begin{array}{cccccc} 2 & 4 & 0 & -5 & -3 & 3 \\ -4 & -1 & -2 & 3 & -5 & -1 \\ -3 & -3 & 1 & -5 & -2 & -5 \\ 1 & -1 & 2 & -1 & -4 & 0 \end{array}\right] = \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & \frac{633}{113} & -\frac{43}{113} \\ 0 & 1 & 0 & 0 & -\frac{600}{113} & \frac{180}{113} \\ 0 & 0 & 1 & 0 & -\frac{922}{113} & \frac{141}{113} \\ 0 & 0 & 0 & 1 & -\frac{159}{113} & \frac{59}{113} \end{array}\right] \end{equation*}
  1. The statement is equivalent to the statement
  2. The set of vectors \(\left\{ \left[\begin{array}{c} 2 \\ -4 \\ -3 \\ 1 \end{array}\right] , \left[\begin{array}{c} 4 \\ -1 \\ -3 \\ -1 \end{array}\right] , \left[\begin{array}{c} 0 \\ -2 \\ 1 \\ 2 \end{array}\right] , \left[\begin{array}{c} -5 \\ 3 \\ -5 \\ -1 \end{array}\right] , \left[\begin{array}{c} -3 \\ -5 \\ -2 \\ -4 \end{array}\right] , \left[\begin{array}{c} 3 \\ -1 \\ -5 \\ 0 \end{array}\right] \right\} \) spans \(\mathbb{R}^4\text{.}\)
4.

Consider the statement

  1. Write an equivalent statement using a vector equation.
  2. Explain why your statement is true or false.
Answer
\begin{equation*} \operatorname{RREF} \left[\begin{array}{ccccc} 2 & -2 & -3 & 1 & -5 \\ 2 & -4 & -4 & 0 & 4 \\ 0 & 4 & -4 & 8 & 0 \\ -4 & -1 & -1 & 0 & -3 \end{array}\right] = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right] \end{equation*}
  1. The statement is equivalent to the statement
  2. The set of vectors \(\left\{ \left[\begin{array}{c} 2 \\ 2 \\ 0 \\ -4 \end{array}\right] , \left[\begin{array}{c} -2 \\ -4 \\ 4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -3 \\ -4 \\ -4 \\ -1 \end{array}\right] , \left[\begin{array}{c} 1 \\ 0 \\ 8 \\ 0 \end{array}\right] , \left[\begin{array}{c} -5 \\ 4 \\ 0 \\ -3 \end{array}\right] \right\} \) spans \(\mathbb{R}^4\text{.}\)
5.

Consider the statement

  1. Write an equivalent statement using a vector equation.
  2. Explain why your statement is true or false.
Answer
\begin{equation*} \operatorname{RREF} \left[\begin{array}{cccccc} -1 & 4 & 3 & -2 & 1 & -2 \\ -1 & -3 & -2 & -5 & 4 & 1 \\ -3 & -5 & -2 & 1 & -2 & 1 \\ 3 & 0 & -5 & 3 & -3 & 2 \end{array}\right] = \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 & \frac{135}{196} & \frac{1}{4} \\ 0 & 1 & 0 & 0 & -\frac{75}{196} & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & \frac{93}{196} & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & -\frac{44}{49} & 0 \end{array}\right] \end{equation*}
  1. The statement is equivalent to the statement
  2. The set of vectors \(\left\{ \left[\begin{array}{c} -1 \\ -1 \\ -3 \\ 3 \end{array}\right] , \left[\begin{array}{c} 4 \\ -3 \\ -5 \\ 0 \end{array}\right] , \left[\begin{array}{c} 3 \\ -2 \\ -2 \\ -5 \end{array}\right] , \left[\begin{array}{c} -2 \\ -5 \\ 1 \\ 3 \end{array}\right] , \left[\begin{array}{c} 1 \\ 4 \\ -2 \\ -3 \end{array}\right] , \left[\begin{array}{c} -2 \\ 1 \\ 1 \\ 2 \end{array}\right] \right\} \) spans \(\mathbb{R}^4\text{.}\)

Additional exercises available at checkit.clontz.org.