Section 2.2 Linear Combinations (V2)
Definition 2.2.1.
A linear combination of a set of vectors \(\{\vec v_1,\vec v_2,\dots,\vec v_m\}\) is given by \(c_1\vec v_1+c_2\vec v_2+\dots+c_m\vec v_m\) for any choice of scalar multiples \(c_1,c_2,\dots,c_m\text{.}\)
For example, we can say \(\left[\begin{array}{c}3 \\0 \\ 5\end{array}\right]\) is a linear combination of the vectors \(\left[\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right]\) and \(\left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right]\) since
Definition 2.2.2.
The span of a set of vectors is the collection of all linear combinations of that set:
For example:
Activity 2.2.1.
Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right]\right\}\text{.}\)
(a)
Sketch \(1\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}1\\2\end{array}\right]\text{,}\) \(3\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}3\\6\end{array}\right]\text{,}\) \(0\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}0\\0\end{array}\right]\text{,}\) and \(-2\left[\begin{array}{c}1\\2\end{array}\right]=\left[\begin{array}{c}-2\\-4\end{array}\right]\) in the \(xy\) plane.
(b)
Sketch a representation of all the vectors belonging to \(\vspan\setList{\left[\begin{array}{c}1\\2\end{array}\right]} = \setBuilder{a\left[\begin{array}{c}1\\2\end{array}\right]}{a\in\IR}\) in the \(xy\) plane.
Activity 2.2.2.
Consider \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]\right\}\text{.}\)
(a)
Sketch the following linear combinations in the \(xy\) plane.
(b)
Sketch a representation of all the vectors belonging to \(\vspan\left\{\left[\begin{array}{c}1\\2\end{array}\right], \left[\begin{array}{c}-1\\1\end{array}\right]\right\}\) in the \(xy\) plane.
Activity 2.2.3.
Sketch a representation of all the vectors belonging to \(\vspan\left\{\left[\begin{array}{c}6\\-4\end{array}\right], \left[\begin{array}{c}-3\\2\end{array}\right]\right\}\) in the \(xy\) plane.
Activity 2.2.4.
(a)
Reinterpret this vector equation as a system of linear equations.
(b)
Find its solution set, using technology to find \(\RREF\) of its corresponding augmented matrix.
(c)
Given this solution set, does \(\left[\begin{array}{c}-1\\-6\\1\end{array}\right]\) belong to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\text{?}\)
Fact 2.2.3.
A vector \(\vec b\) belongs to \(\vspan\{\vec v_1,\dots,\vec v_n\}\) if and only if the vector equation \(x_1 \vec{v}_1+\cdots+x_n \vec{v_n}=\vec{b}\) is consistent.
Observation 2.2.4.
The following are all equivalent statements:
The vector \(\vec{b}\) belongs to \(\vspan\{\vec v_1,\dots,\vec v_n\}\text{.}\)
The vector equation \(x_1 \vec{v}_1+\cdots+x_n \vec{v}_n=\vec{b}\) is consistent.
The linear system corresponding to \(\left[\vec v_1\,\dots\,\vec v_n \,|\, \vec b\right]\) is consistent.
\(\RREF\left[\vec v_1\,\dots\,\vec v_n \,|\, \vec b\right]\) doesn't have a row \([0\,\cdots\,0\,|\,1]\) representing the contradiction \(0=1\text{.}\)
Activity 2.2.5.
Determine if \(\left[\begin{array}{c}3\\-2\\1 \\ 5\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3 \\ 2\end{array}\right], \left[\begin{array}{c}-1\\-3\\2 \\ 2\end{array}\right]\right\}\) by solving an appropriate vector equation.
Activity 2.2.6.
Determine if \(\left[\begin{array}{c}-1\\-9\\0\end{array}\right]\) belongs to \(\vspan\left\{\left[\begin{array}{c}1\\0\\-3\end{array}\right], \left[\begin{array}{c}-1\\-3\\2\end{array}\right]\right\}\) by solving an appropriate vector equation.
Activity 2.2.7.
Does the third-degree polynomial \(3y^3-2y^2+y+5\) in \(\P^3\) belong to \(\vspan\{y^3-3y+2,-y^3-3y^2+2y+2\}\text{?}\)
(a)
Reinterpret this question as a question about the solution(s) of a polynomial equation.
(b)
Answer this equivalent question, and use its solution to answer the original question.
Activity 2.2.8.
Does the polynomial \(x^2+x+1\) belong to \(\vspan\{x^2-x,x+1, x^2-1\}\text{?}\)
Activity 2.2.9.
Does the matrix \(\left[\begin{array}{c}3&-2\\1&5\end{array}\right]\) belong to \(\vspan\left\{\left[\begin{array}{c}1&0\\-3&2\end{array}\right], \left[\begin{array}{c}-1&-3\\2&2\end{array}\right]\right\}\text{?}\)
(a)
Reinterpret this question as a question about the solution(s) of a matrix equation.
(b)
Answer this equivalent question, and use its solution to answer the original question.
Exercises 2.2.1 Exercises
1.
Consider the statement
Claim 2.2.5.
\(\left[\begin{array}{c}
-2 \\
-6 \\
-6 \\
-4
\end{array}\right] \)\(\left[\begin{array}{c}
3 \\
2 \\
-5 \\
-3
\end{array}\right] , \left[\begin{array}{c}
0 \\
1 \\
-3 \\
1
\end{array}\right] , \text{ and } \left[\begin{array}{c}
4 \\
-3 \\
-3 \\
0
\end{array}\right] \text{.}\)
- Write an equivalent statement using a vector equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.2.6.
\(\left[\begin{array}{c} -2 \\ -6 \\ -6 \\ -4 \end{array}\right] \)\(\left[\begin{array}{c} 3 \\ 2 \\ -5 \\ -3 \end{array}\right] , \left[\begin{array}{c} 0 \\ 1 \\ -3 \\ 1 \end{array}\right] , \text{ and } \left[\begin{array}{c} 4 \\ -3 \\ -3 \\ 0 \end{array}\right] \text{.}\)Claim 2.2.7.
\(x_{1} \left[\begin{array}{c} 3 \\ 2 \\ -5 \\ -3 \end{array}\right] + x_{2} \left[\begin{array}{c} 0 \\ 1 \\ -3 \\ 1 \end{array}\right] + x_{3} \left[\begin{array}{c} 4 \\ -3 \\ -3 \\ 0 \end{array}\right] = \left[\begin{array}{c} -2 \\ -6 \\ -6 \\ -4 \end{array}\right] \) \(\left[\begin{array}{c} -2 \\ -6 \\ -6 \\ -4 \end{array}\right] \) is not a linear combination of the vectors \(\left[\begin{array}{c} 3 \\ 2 \\ -5 \\ -3 \end{array}\right] , \left[\begin{array}{c} 0 \\ 1 \\ -3 \\ 1 \end{array}\right] , \text{ and } \left[\begin{array}{c} 4 \\ -3 \\ -3 \\ 0 \end{array}\right] \text{.}\)
2.
Consider the statement
Claim 2.2.8.
\(\left[\begin{array}{c}
-6 \\
1 \\
7 \\
-2
\end{array}\right] \)\(\left[\begin{array}{c}
4 \\
-2 \\
1 \\
0
\end{array}\right] , \left[\begin{array}{c}
-5 \\
0 \\
4 \\
-3
\end{array}\right] , \left[\begin{array}{c}
-3 \\
1 \\
-4 \\
-1
\end{array}\right] , \text{ and } \left[\begin{array}{c}
-2 \\
-2 \\
2 \\
-2
\end{array}\right] \text{.}\)
- Write an equivalent statement using a vector equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.2.9.
\(\left[\begin{array}{c} -6 \\ 1 \\ 7 \\ -2 \end{array}\right] \)\(\left[\begin{array}{c} 4 \\ -2 \\ 1 \\ 0 \end{array}\right] , \left[\begin{array}{c} -5 \\ 0 \\ 4 \\ -3 \end{array}\right] , \left[\begin{array}{c} -3 \\ 1 \\ -4 \\ -1 \end{array}\right] , \text{ and } \left[\begin{array}{c} -2 \\ -2 \\ 2 \\ -2 \end{array}\right] \text{.}\)Claim 2.2.10.
\(x_{1} \left[\begin{array}{c} 4 \\ -2 \\ 1 \\ 0 \end{array}\right] + x_{2} \left[\begin{array}{c} -5 \\ 0 \\ 4 \\ -3 \end{array}\right] + x_{3} \left[\begin{array}{c} -3 \\ 1 \\ -4 \\ -1 \end{array}\right] + x_{4} \left[\begin{array}{c} -2 \\ -2 \\ 2 \\ -2 \end{array}\right] = \left[\begin{array}{c} -6 \\ 1 \\ 7 \\ -2 \end{array}\right] \) \(\left[\begin{array}{c} -6 \\ 1 \\ 7 \\ -2 \end{array}\right] \) is a linear combination of the vectors \(\left[\begin{array}{c} 4 \\ -2 \\ 1 \\ 0 \end{array}\right] , \left[\begin{array}{c} -5 \\ 0 \\ 4 \\ -3 \end{array}\right] , \left[\begin{array}{c} -3 \\ 1 \\ -4 \\ -1 \end{array}\right] , \text{ and } \left[\begin{array}{c} -2 \\ -2 \\ 2 \\ -2 \end{array}\right] \text{.}\)
3.
Consider the statement
Claim 2.2.11.
\(\left[\begin{array}{c}
-7 \\
6 \\
-1 \\
-9
\end{array}\right] \)\(\left[\begin{array}{c}
2 \\
-3 \\
-3 \\
0
\end{array}\right] , \left[\begin{array}{c}
4 \\
-1 \\
-3 \\
2
\end{array}\right] , \left[\begin{array}{c}
8 \\
-2 \\
-6 \\
4
\end{array}\right] , \left[\begin{array}{c}
12 \\
2 \\
-6 \\
8
\end{array}\right] , \text{ and } \left[\begin{array}{c}
0 \\
-5 \\
-3 \\
-2
\end{array}\right] \text{.}\)
- Write an equivalent statement using a vector equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.2.12.
\(\left[\begin{array}{c} -7 \\ 6 \\ -1 \\ -9 \end{array}\right] \)\(\left[\begin{array}{c} 2 \\ -3 \\ -3 \\ 0 \end{array}\right] , \left[\begin{array}{c} 4 \\ -1 \\ -3 \\ 2 \end{array}\right] , \left[\begin{array}{c} 8 \\ -2 \\ -6 \\ 4 \end{array}\right] , \left[\begin{array}{c} 12 \\ 2 \\ -6 \\ 8 \end{array}\right] , \text{ and } \left[\begin{array}{c} 0 \\ -5 \\ -3 \\ -2 \end{array}\right] \text{.}\)Claim 2.2.13.
\(x_{1} \left[\begin{array}{c} 2 \\ -3 \\ -3 \\ 0 \end{array}\right] + x_{2} \left[\begin{array}{c} 4 \\ -1 \\ -3 \\ 2 \end{array}\right] + x_{3} \left[\begin{array}{c} 8 \\ -2 \\ -6 \\ 4 \end{array}\right] + x_{4} \left[\begin{array}{c} 12 \\ 2 \\ -6 \\ 8 \end{array}\right] + x_{5} \left[\begin{array}{c} 0 \\ -5 \\ -3 \\ -2 \end{array}\right] = \left[\begin{array}{c} -7 \\ 6 \\ -1 \\ -9 \end{array}\right] \) \(\left[\begin{array}{c} -7 \\ 6 \\ -1 \\ -9 \end{array}\right] \) is not a linear combination of the vectors \(\left[\begin{array}{c} 2 \\ -3 \\ -3 \\ 0 \end{array}\right] , \left[\begin{array}{c} 4 \\ -1 \\ -3 \\ 2 \end{array}\right] , \left[\begin{array}{c} 8 \\ -2 \\ -6 \\ 4 \end{array}\right] , \left[\begin{array}{c} 12 \\ 2 \\ -6 \\ 8 \end{array}\right] , \text{ and } \left[\begin{array}{c} 0 \\ -5 \\ -3 \\ -2 \end{array}\right] \text{.}\)
4.
Consider the statement
Claim 2.2.14.
\(\left[\begin{array}{c}
7 \\
10 \\
16 \\
7
\end{array}\right] \)\(\left[\begin{array}{c}
2 \\
2 \\
2 \\
-1
\end{array}\right] , \left[\begin{array}{c}
-4 \\
-2 \\
-4 \\
1
\end{array}\right] , \left[\begin{array}{c}
-1 \\
-2 \\
-4 \\
-3
\end{array}\right] , \text{ and } \left[\begin{array}{c}
-1 \\
2 \\
-3 \\
-2
\end{array}\right] \text{.}\)
- Write an equivalent statement using a vector equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.2.15.
\(\left[\begin{array}{c} 7 \\ 10 \\ 16 \\ 7 \end{array}\right] \)\(\left[\begin{array}{c} 2 \\ 2 \\ 2 \\ -1 \end{array}\right] , \left[\begin{array}{c} -4 \\ -2 \\ -4 \\ 1 \end{array}\right] , \left[\begin{array}{c} -1 \\ -2 \\ -4 \\ -3 \end{array}\right] , \text{ and } \left[\begin{array}{c} -1 \\ 2 \\ -3 \\ -2 \end{array}\right] \text{.}\)Claim 2.2.16.
\(x_{1} \left[\begin{array}{c} 2 \\ 2 \\ 2 \\ -1 \end{array}\right] + x_{2} \left[\begin{array}{c} -4 \\ -2 \\ -4 \\ 1 \end{array}\right] + x_{3} \left[\begin{array}{c} -1 \\ -2 \\ -4 \\ -3 \end{array}\right] + x_{4} \left[\begin{array}{c} -1 \\ 2 \\ -3 \\ -2 \end{array}\right] = \left[\begin{array}{c} 7 \\ 10 \\ 16 \\ 7 \end{array}\right] \) \(\left[\begin{array}{c} 7 \\ 10 \\ 16 \\ 7 \end{array}\right] \) is a linear combination of the vectors \(\left[\begin{array}{c} 2 \\ 2 \\ 2 \\ -1 \end{array}\right] , \left[\begin{array}{c} -4 \\ -2 \\ -4 \\ 1 \end{array}\right] , \left[\begin{array}{c} -1 \\ -2 \\ -4 \\ -3 \end{array}\right] , \text{ and } \left[\begin{array}{c} -1 \\ 2 \\ -3 \\ -2 \end{array}\right] \text{.}\)
5.
Consider the statement
Claim 2.2.17.
\(\left[\begin{array}{c}
-5 \\
-4 \\
2 \\
3
\end{array}\right] \)\(\left[\begin{array}{c}
-1 \\
-1 \\
-3 \\
1
\end{array}\right] , \left[\begin{array}{c}
4 \\
-2 \\
-5 \\
-1
\end{array}\right] , \left[\begin{array}{c}
-2 \\
-2 \\
-6 \\
2
\end{array}\right] , \left[\begin{array}{c}
-4 \\
8 \\
22 \\
-2
\end{array}\right] , \text{ and } \left[\begin{array}{c}
-4 \\
2 \\
5 \\
1
\end{array}\right] \text{.}\)
- Write an equivalent statement using a vector equation.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.2.18.
\(\left[\begin{array}{c} -5 \\ -4 \\ 2 \\ 3 \end{array}\right] \)\(\left[\begin{array}{c} -1 \\ -1 \\ -3 \\ 1 \end{array}\right] , \left[\begin{array}{c} 4 \\ -2 \\ -5 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ -2 \\ -6 \\ 2 \end{array}\right] , \left[\begin{array}{c} -4 \\ 8 \\ 22 \\ -2 \end{array}\right] , \text{ and } \left[\begin{array}{c} -4 \\ 2 \\ 5 \\ 1 \end{array}\right] \text{.}\)Claim 2.2.19.
\(x_{1} \left[\begin{array}{c} -1 \\ -1 \\ -3 \\ 1 \end{array}\right] + x_{2} \left[\begin{array}{c} 4 \\ -2 \\ -5 \\ -1 \end{array}\right] + x_{3} \left[\begin{array}{c} -2 \\ -2 \\ -6 \\ 2 \end{array}\right] + x_{4} \left[\begin{array}{c} -4 \\ 8 \\ 22 \\ -2 \end{array}\right] + x_{5} \left[\begin{array}{c} -4 \\ 2 \\ 5 \\ 1 \end{array}\right] = \left[\begin{array}{c} -5 \\ -4 \\ 2 \\ 3 \end{array}\right] \) \(\left[\begin{array}{c} -5 \\ -4 \\ 2 \\ 3 \end{array}\right] \) is not a linear combination of the vectors \(\left[\begin{array}{c} -1 \\ -1 \\ -3 \\ 1 \end{array}\right] , \left[\begin{array}{c} 4 \\ -2 \\ -5 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ -2 \\ -6 \\ 2 \end{array}\right] , \left[\begin{array}{c} -4 \\ 8 \\ 22 \\ -2 \end{array}\right] , \text{ and } \left[\begin{array}{c} -4 \\ 2 \\ 5 \\ 1 \end{array}\right] \text{.}\)
Additional exercises available at checkit.clontz.org.