Section 2.6 Identifying a Basis (V6)
Definition 2.6.1.
A basis is a linearly independent set that spans a vector space.
The standard basis of \(\IR^n\) is the set \(\{\vec{e}_1, \ldots, \vec{e}_n\}\) where
For \(\IR^3\text{,}\) these are the vectors \(\vec e_1=\hat\imath=\left[\begin{array}{c}1 \\ 0 \\ 0\end{array}\right], \vec e_2=\hat\jmath=\left[\begin{array}{c}0 \\ 1 \\ 0\end{array}\right],\) and \(\vec e_3=\hat k=\left[\begin{array}{c}0 \\ 0 \\ 1\end{array}\right] \text{.}\)
Observation 2.6.2.
A basis may be thought of as a collection of building blocks for a vector space, since every vector in the space can be expressed as a unique linear combination of basis vectors.
For example, in many calculus courses, vectors in \(\IR^3\) are often expressed in their component form
or in their standard basic vector form
Since every vector in \(\IR^3\) can be uniquely described as a linear combination of the vectors in \(\setList{\vec e_1,\vec e_2,\vec e_3}\text{,}\) this set is indeed a basis.
Activity 2.6.1.
Label each of the sets \(A,B,C,D,E\) as
SPANS \(\IR^4\) or DOES NOT SPAN \(\IR^4\)
LINEARLY INDEPENDENT or LINEARLY DEPENDENT
BASIS FOR \(\IR^4\) or NOT A BASIS FOR \(\IR^4\)
by finding \(\RREF\) for their corresponding matrices.
Activity 2.6.2.
If \(\{\vec v_1,\vec v_2,\vec v_3,\vec v_4\}\) is a basis for \(\IR^4\text{,}\) that means \(\RREF[\vec v_1\,\vec v_2\,\vec v_3\,\vec v_4]\) doesn't have a non-pivot column, and doesn't have a row of zeros. What is \(\RREF[\vec v_1\,\vec v_2\,\vec v_3\,\vec v_4]\text{?}\)
Fact 2.6.3.
The set \(\{\vec v_1,\dots,\vec v_m\}\) is a basis for \(\IR^n\) if and only if \(m=n\) and \(\RREF[\vec v_1\,\dots\,\vec v_n]= \left[\begin{array}{cccc} 1&0&\dots&0\\ 0&1&\dots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\dots&1 \end{array}\right] \text{.}\)
That is, a basis for \(\IR^n\) must have exactly \(n\) vectors and its square matrix must row-reduce to the so-called identity matrix containing all zeros except for a downward diagonal of ones. (We will learn where the identity matrix gets its name in a later module.)
Exercises 2.6.1 Exercises
1.
Consider the statement
Claim 2.6.4.
\(\left\{ \left[\begin{array}{c}
3 \\
-5 \\
-5
\end{array}\right] , \left[\begin{array}{c}
0 \\
3 \\
-3
\end{array}\right] , \left[\begin{array}{c}
3 \\
-14 \\
4
\end{array}\right] \right\} \)\(\mathbb{R}^3\text{.}\)
- Write an equivalent statement in terms of other vector properties.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.6.5.
\(\left\{ \left[\begin{array}{c} 3 \\ -5 \\ -5 \end{array}\right] , \left[\begin{array}{c} 0 \\ 3 \\ -3 \end{array}\right] , \left[\begin{array}{c} 3 \\ -14 \\ 4 \end{array}\right] \right\} \)\(\mathbb{R}^3\text{.}\)Claim 2.6.6.
\(\left\{ \left[\begin{array}{c} 3 \\ -5 \\ -5 \end{array}\right] , \left[\begin{array}{c} 0 \\ 3 \\ -3 \end{array}\right] , \left[\begin{array}{c} 3 \\ -14 \\ 4 \end{array}\right] \right\} \)\(\mathbb{R}^3\) - The set of vectors \(\left\{ \left[\begin{array}{c} 3 \\ -5 \\ -5 \end{array}\right] , \left[\begin{array}{c} 0 \\ 3 \\ -3 \end{array}\right] , \left[\begin{array}{c} 3 \\ -14 \\ 4 \end{array}\right] \right\} \) is not a basis of \(\mathbb{R}^3\)
2.
Consider the statement
Claim 2.6.7.
\(\left\{ \left[\begin{array}{c}
4 \\
-3 \\
1 \\
2
\end{array}\right] , \left[\begin{array}{c}
-5 \\
1 \\
4 \\
-4
\end{array}\right] , \left[\begin{array}{c}
-3 \\
4 \\
-4 \\
-1
\end{array}\right] , \left[\begin{array}{c}
-2 \\
-3 \\
2 \\
-3
\end{array}\right] \right\} \)\(\mathbb{R}^4\text{.}\)
- Write an equivalent statement in terms of other vector properties.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.6.8.
\(\left\{ \left[\begin{array}{c} 4 \\ -3 \\ 1 \\ 2 \end{array}\right] , \left[\begin{array}{c} -5 \\ 1 \\ 4 \\ -4 \end{array}\right] , \left[\begin{array}{c} -3 \\ 4 \\ -4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ -3 \\ 2 \\ -3 \end{array}\right] \right\} \)\(\mathbb{R}^4\text{.}\)Claim 2.6.9.
\(\left\{ \left[\begin{array}{c} 4 \\ -3 \\ 1 \\ 2 \end{array}\right] , \left[\begin{array}{c} -5 \\ 1 \\ 4 \\ -4 \end{array}\right] , \left[\begin{array}{c} -3 \\ 4 \\ -4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ -3 \\ 2 \\ -3 \end{array}\right] \right\} \)\(\mathbb{R}^4\) - The set of vectors \(\left\{ \left[\begin{array}{c} 4 \\ -3 \\ 1 \\ 2 \end{array}\right] , \left[\begin{array}{c} -5 \\ 1 \\ 4 \\ -4 \end{array}\right] , \left[\begin{array}{c} -3 \\ 4 \\ -4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -2 \\ -3 \\ 2 \\ -3 \end{array}\right] \right\} \) is a basis of \(\mathbb{R}^4\)
3.
Consider the statement
Claim 2.6.10.
\(\left\{ \left[\begin{array}{c}
2 \\
-4 \\
-3 \\
1 \\
4
\end{array}\right] , \left[\begin{array}{c}
-1 \\
-3 \\
-1 \\
0 \\
-2
\end{array}\right] , \left[\begin{array}{c}
2 \\
-14 \\
-8 \\
2 \\
4
\end{array}\right] , \left[\begin{array}{c}
-1 \\
-3 \\
-5 \\
-2 \\
-4
\end{array}\right] , \left[\begin{array}{c}
2 \\
-4 \\
-3 \\
1 \\
4
\end{array}\right] \right\} \)\(\mathbb{R}^5\text{.}\)
- Write an equivalent statement in terms of other vector properties.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.6.11.
\(\left\{ \left[\begin{array}{c} 2 \\ -4 \\ -3 \\ 1 \\ 4 \end{array}\right] , \left[\begin{array}{c} -1 \\ -3 \\ -1 \\ 0 \\ -2 \end{array}\right] , \left[\begin{array}{c} 2 \\ -14 \\ -8 \\ 2 \\ 4 \end{array}\right] , \left[\begin{array}{c} -1 \\ -3 \\ -5 \\ -2 \\ -4 \end{array}\right] , \left[\begin{array}{c} 2 \\ -4 \\ -3 \\ 1 \\ 4 \end{array}\right] \right\} \)\(\mathbb{R}^5\text{.}\)Claim 2.6.12.
\(\left\{ \left[\begin{array}{c} 2 \\ -4 \\ -3 \\ 1 \\ 4 \end{array}\right] , \left[\begin{array}{c} -1 \\ -3 \\ -1 \\ 0 \\ -2 \end{array}\right] , \left[\begin{array}{c} 2 \\ -14 \\ -8 \\ 2 \\ 4 \end{array}\right] , \left[\begin{array}{c} -1 \\ -3 \\ -5 \\ -2 \\ -4 \end{array}\right] , \left[\begin{array}{c} 2 \\ -4 \\ -3 \\ 1 \\ 4 \end{array}\right] \right\} \)\(\mathbb{R}^5\) - The set of vectors \(\left\{ \left[\begin{array}{c} 2 \\ -4 \\ -3 \\ 1 \\ 4 \end{array}\right] , \left[\begin{array}{c} -1 \\ -3 \\ -1 \\ 0 \\ -2 \end{array}\right] , \left[\begin{array}{c} 2 \\ -14 \\ -8 \\ 2 \\ 4 \end{array}\right] , \left[\begin{array}{c} -1 \\ -3 \\ -5 \\ -2 \\ -4 \end{array}\right] , \left[\begin{array}{c} 2 \\ -4 \\ -3 \\ 1 \\ 4 \end{array}\right] \right\} \) is not a basis of \(\mathbb{R}^5\)
4.
Consider the statement
Claim 2.6.13.
\(\left\{ \left[\begin{array}{c}
2 \\
2 \\
0 \\
-4
\end{array}\right] , \left[\begin{array}{c}
-2 \\
-4 \\
4 \\
-1
\end{array}\right] , \left[\begin{array}{c}
-8 \\
-12 \\
8 \\
6
\end{array}\right] , \left[\begin{array}{c}
-3 \\
-3 \\
0 \\
2
\end{array}\right] \right\} \)\(\mathbb{R}^4\text{.}\)
- Write an equivalent statement in terms of other vector properties.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.6.14.
\(\left\{ \left[\begin{array}{c} 2 \\ 2 \\ 0 \\ -4 \end{array}\right] , \left[\begin{array}{c} -2 \\ -4 \\ 4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -8 \\ -12 \\ 8 \\ 6 \end{array}\right] , \left[\begin{array}{c} -3 \\ -3 \\ 0 \\ 2 \end{array}\right] \right\} \)\(\mathbb{R}^4\text{.}\)Claim 2.6.15.
\(\left\{ \left[\begin{array}{c} 2 \\ 2 \\ 0 \\ -4 \end{array}\right] , \left[\begin{array}{c} -2 \\ -4 \\ 4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -8 \\ -12 \\ 8 \\ 6 \end{array}\right] , \left[\begin{array}{c} -3 \\ -3 \\ 0 \\ 2 \end{array}\right] \right\} \)\(\mathbb{R}^4\) - The set of vectors \(\left\{ \left[\begin{array}{c} 2 \\ 2 \\ 0 \\ -4 \end{array}\right] , \left[\begin{array}{c} -2 \\ -4 \\ 4 \\ -1 \end{array}\right] , \left[\begin{array}{c} -8 \\ -12 \\ 8 \\ 6 \end{array}\right] , \left[\begin{array}{c} -3 \\ -3 \\ 0 \\ 2 \end{array}\right] \right\} \) is not a basis of \(\mathbb{R}^4\)
5.
Consider the statement
Claim 2.6.16.
\(\left\{ \left[\begin{array}{c}
-1 \\
-1 \\
-3 \\
3 \\
4
\end{array}\right] , \left[\begin{array}{c}
-3 \\
-5 \\
0 \\
3 \\
-2
\end{array}\right] , \left[\begin{array}{c}
-2 \\
-5 \\
-2 \\
-5 \\
1
\end{array}\right] , \left[\begin{array}{c}
3 \\
5 \\
0 \\
-3 \\
2
\end{array}\right] , \left[\begin{array}{c}
-2 \\
1 \\
1 \\
2 \\
1
\end{array}\right] \right\} \)\(\mathbb{R}^5\text{.}\)
- Write an equivalent statement in terms of other vector properties.
- Explain why your statement is true or false.
- The statement
is equivalent to the statementClaim 2.6.17.
\(\left\{ \left[\begin{array}{c} -1 \\ -1 \\ -3 \\ 3 \\ 4 \end{array}\right] , \left[\begin{array}{c} -3 \\ -5 \\ 0 \\ 3 \\ -2 \end{array}\right] , \left[\begin{array}{c} -2 \\ -5 \\ -2 \\ -5 \\ 1 \end{array}\right] , \left[\begin{array}{c} 3 \\ 5 \\ 0 \\ -3 \\ 2 \end{array}\right] , \left[\begin{array}{c} -2 \\ 1 \\ 1 \\ 2 \\ 1 \end{array}\right] \right\} \)\(\mathbb{R}^5\text{.}\)Claim 2.6.18.
\(\left\{ \left[\begin{array}{c} -1 \\ -1 \\ -3 \\ 3 \\ 4 \end{array}\right] , \left[\begin{array}{c} -3 \\ -5 \\ 0 \\ 3 \\ -2 \end{array}\right] , \left[\begin{array}{c} -2 \\ -5 \\ -2 \\ -5 \\ 1 \end{array}\right] , \left[\begin{array}{c} 3 \\ 5 \\ 0 \\ -3 \\ 2 \end{array}\right] , \left[\begin{array}{c} -2 \\ 1 \\ 1 \\ 2 \\ 1 \end{array}\right] \right\} \)\(\mathbb{R}^5\) - The set of vectors \(\left\{ \left[\begin{array}{c} -1 \\ -1 \\ -3 \\ 3 \\ 4 \end{array}\right] , \left[\begin{array}{c} -3 \\ -5 \\ 0 \\ 3 \\ -2 \end{array}\right] , \left[\begin{array}{c} -2 \\ -5 \\ -2 \\ -5 \\ 1 \end{array}\right] , \left[\begin{array}{c} 3 \\ 5 \\ 0 \\ -3 \\ 2 \end{array}\right] , \left[\begin{array}{c} -2 \\ 1 \\ 1 \\ 2 \\ 1 \end{array}\right] \right\} \) is not a basis of \(\mathbb{R}^5\)
Additional exercises available at checkit.clontz.org.